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A Three-Dimensional Haar-Wavelet-Based
Multiresolution Analysis Similar to
the FDTD Method—Derivation
and Application

Masafumi Fujii, Student Member, IEEEand Wolfgang J. R. HoefeFRellow, IEEE

Abstract—A three-dimensional (3-D) multiresolution analysis (MRTD) technique [6], [7], the Daubechies-wavelet-based
procedure similar to the finite-difference time-domain (FDTD) technique [8], and a multigrid technique using Haar wavelets

method is derived using a complete set of three-dimensional ; :
orthonormal bases of Haar scaling and wavelet functions. The [9], [10]. These techniques have been applied to analyze

expansion of the electric and the magnetic fields in these basishrée-dimensional (3-D) cavity resonator problems [7], [11],
functions leads to the time iterative difference approximation two-dimensional field distributions in microstrip lines [9], [12],

of Maxwell’s equations that is similar to the FDTD method. and three-dimensional cavities with various inhomogeneous
This technique effectively models realistic microwave passive gielectrics [13]. Although these techniques have complex

components by virtue of its multiresolution property; the compu- . . . - .
tational time is reduced approximately by half compared to the dispersion properties [14], it has been pointed out that they

FDTD method. The proposed technique is validated by analyzing have the advantage of requiring less computational effort than
several 3-D rectangular resonators with inhomogeneous dielectric other time-domain techniques.

loading. It is also applied to the analyses of microwave passive This paper describes the derivation and the application
devices with open boundaries such as micrstrip low-pass filters of an FDTD-like multiresolution technique based on Haar

and spiral inductors to extract their S-parameters and field | Itis f lated in th di . | d ti
distributions. The results of the proposed technique agree well wavelets. [tis formulated in three-dimensional space and time

with those of the traditional FDTD method. using Haar scaling and wavelet functions at one scaling level.
Index Terms—FDTD method, Haar wavelets, multiresolution A complete_ se.t of orthonormal bases in th.ree_dlmensmnal
analysis. real-space is first created using Haar scaling and wavelet

functions. The field components in tile-H formulation of
Maxwell's equations are then expanded in the orthonormal
bases. Subsequently following Galerkin's procedure of the
UMERICAL computation has become a powerful andnethod of moments, it leads to FDTD-like time-iterative
important technique for solving electromagnetic proldifference equations that are individually applied to each
lems. This is due to increased computer performance as wedlsis function. For structures with inhomogeneous dielectric
as to growing complexity of problems that must be solvethaterials, dielectric materials are treated in an approximate
Time domain methods such as finite-difference time-domaianner where the relative permittivity has an isotropic prop-
(FDTD) [1] and transmission line matrix (TLM) [2] methodserty at the interfaces of different dielectric materials. An exact
are gaining importance by virtue of their versatility and thgeatment for analyzing inhomogeneous dielectric materials
natural way in which they simulate what happens in realitwill be discussed in the last section; this exact formulation
Nevertheless, these methods are limited by available compyteids to a stable algorithm. The perfect electric conductor
memory and computational time. (PEC) boundaries are first formulated using simple forward-
In the meantime, wavelet analysis has been vigorously backward-difference approximation. The PEC boundaries
studied in the field of mathematics [3], [4]. It has bee@re then improved by using Lagrange interpolation to analyze
reported that wavelet analysis can be applied to frequengygher order modes in a cavity. Mur's first-order absorbing
domain electromagnetic analysis via the method of momemlgundary condition (ABC) is implemented in this paper.
to improve computational efficiencies due to the orthonormagc’s can be implemented similarly as in the conventional
and multiresolutional nature of the wavelet functions [5].  EDTD method. In the case of the Haar scaling and wavelet
The following time-domain techniques have recentlyssis functions, a basis transformation matrix was found to

been proposed to improve computational efficiency: the, yseful for sampling field values from wavelet expansion
Battle-Lemarie-wavelet-based multiresolution time-domaiyefficients.

I. INTRODUCTION
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analysis having the same number of degrees of freedom; the
comparison was under a condition that the same amount of
computer memory was involved in both methods. Furthermore,
the proposed technique is also applied to analyze microstrip
low-pass filters and spiral inductors with open boundaries to
extract theirS-parameters and field distributions. The results
were compared to those obtained with the conventional FDTD
analysis. These analyses demonstrate the suitability of this new
technique for solving practical microwave problems.

The required computer resources are discussed and com-
pared with those of the conventional FDTD method. The
multiresolution technique has a potential capability of reducing
the computational effort by thresholding small coefficients
[11]; the unknown coefficients that are smaller than a certain
value can be omitted without affecting the computational
accuracy. However, thresholding has not been implemented in
this paper. Although the accuracy and the memory requirement
of this new procedure are similar to those of a conventional
FDTD method having the same number of degrees of free-
dom, the multiresolution technique based on Haar wavelets is
approximately twice as fast.

Il. FORMULATION

A. 3-D Basis Functions and Time lterative
Difference Equations

The field components in Maxwell's curl equations
oH

E=—yu— 1
V x b5 (1a)
VXHIG%—]S—‘,-O'E—‘,-J (1b)

are expanded in the following eight orthonormal basis func-
tions. Those basis functions are products of three-dimensional
combinations of the Haar scaling) and wavelet(s)) func-
tions [3] multiplied by a rectangular pulse function in time
(h) as follows:

Ex node

) (h)

Fig. 1. Three-dimensional Haar basis functions for 7an node. Hatched

. ¢z($)¢1(y)¢k (z)hn (t) regions represent-1 and unhatched regions represeri.
bi(x) () (2)hn(t)
¢i(x); (y)Pr(2)hn () with the space and time discretization intervals, Ay, Az,
Yi(2) 9 (y)Pr(2)hn(t) (2) and At. Instead of the definition ofp and ¢ in [3], the
bi(@)h; (Y)Pa(z)hn(t) following must be used to obtain appropriate inner products
Yi(@)d; () r(2)hn(t) when applying Galerkin's procedure as described later
Pi(2)9 ()P (2)hn(t)
i) () vn(2) b (F) 1, for|s| <1/2
where P(s)= ¢ 1/2, for |s| = 1/2 (5a)
0, otherwise
w — mAw
ol :¢< ) 3a 1/2,  fors=—1/2
(w) Aw (32) 1, for —1/2<s<0
A w—mAw P(s) =< —1, for0<s<1/2 (5b)
Y (w) —7/’( Aw ) (3b) —-1/2, fors=1/2
for (w, m) = (z, i), (y, 5), (2, k) 0, for s = 0 and otherwise
and The basis functions (2) have the support (or the width

of the function having nonzero value) equal to the spatial

1,  for(n—1/2)At <t < (n+1/2)At

(4) discretization intervalsAz, Ay, and Az. The spatial basis

h(t) = { .
0,  otherwise functions for anE,, node are shown as an example in Fig. 1.
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In Cartesian coordinates, the expansions of the electric field
and the current densit;E,; and ./, for example, are given by
T K N
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where the left hand side subscriptsi .k, and 1 denote., n-+

and the expansion of the magnetic fiel, for example, is 1/2, n —1/2, andn + 1, respectively, and the right hand side

given by subscript, for example(h0h) denotes(i + 1/2, j, k — 1/2),
H, (7, 1) and so forth. The coefficients are given by
AU i A A
TJ K mo— t.{ a:} (10a)
= Z Z Z Zhn-l-l/Q pigr LAY Az [y
=0 j7=0 k=0 n=0 = Ok _ 26ijk — O’Z‘jkAt (10b)
{nJrl/? H?f'ﬂm k12 (@) Pig1/2(Y) Prgrsa(2) T 26+ oijrAt
2At Ax
ulodl ZT e _
12" HTY H—l/2 k+1/2 ¢i(2) @jt1/2(y) Yroyr/2(2) i = 2¢;51 + T AL ' [Ay AZ:|7‘jk (10c)
Tty M J+1/2 w12 P8 Vjpry2(W) dyrya(2)  for x,y, and z cyclic. The material constantg;;x, €k,
+ nti/o Hz J+1/2 k+1/21/’z(97) bit12(1) Pryr/2(2) and o;;, are defined as a common value in a unit Yee
o gyt cell. Equations (8)—(10) are the same as those appearing in
o2 HGY L iH1/2, k12 ¢i() Yi4172(W) Yrt1/2(2)  the traditional FDTD method. The only difference is that
F g HY Y it 2 () Big1 /2 (W) Yrgrja(2) in the multiresolution method, the equations are computed
' ’+ /2 K41/ independently for each basis function (2).
+n+1/2 H J+1/2 k+1/21/}1($) z/}j+1/2(y) ¢k+1/2(7)

/2 HY U o o 0 $y412(9) Vg o (2) }

B. Relation Between the Haar Basis Coefficients

(7) and the Actual Field Values

where the notations are consistent with those used in [7]Inthis multiresolution technique, the space is discretized us-
except that the field vaIuﬁFcnfk with F = E, J, H and Ing the conventional Yee cell. However, to relate the expansion
¢, m, & = ¢, ¢ denotes the expansion Coeff|c|ents in termeoefficients to the actual field values, the Yee cell is divided
of the Haar scaling and wavelet functions at time step into eight subcells in such a way that the original field node
and position(i, j, k). The remaining field components carPn the Yee cell is surrounded by the eight subcells. We call

be expanded similarly.

“subcell” an elementary cubic volume that surrounds a point

Subsequently, each component is substituted in Maxwel(80de) at which a discrete field component is defined in 3-D
equations (1), and then, by following Galerkin's procedure §Pace. The example of ahl,, node is shown in Fig. 2. The
the method of moment, the resulting expressions are tesftpcells are namedl, llv, lul, and so on, corresponding to
with the basis functions (2). This leads to time iterativée lower(l) or upper(u) position with respect to the Yee’s
difference equations in terms of the voltage across #he field node along ther-, y-, and z-axes. The centers of the
node” V"™, =7 ES", Ag, the current flowing at thé-node Subcells are field sampllng points of the new multiresolution

ik — n gk

“’Icnfk = chng Az, and the current source at t&node grid. We call the center of the subcells “sub node.” As one can

nT, g,

nffzf = ijsz AyAz, with z, y, z cyclic and(, n, £ =
¢, ¢ as

& _x y(né a; m
IO hh — IO h h Ohh

deduce from Fig. 2, each subcell on the multiresolution grid
comprises three electric and three magnetic field components.
The number of degrees of freedom for the multiresolution
technique is eight times that of the traditional FDTD method

{ yens _ Vgng (ngng ngng)} (8a) having the same Yee grid size. This means that for the same
OLh 00k Okl 0RO number of degrees of freedom, the multiresolution technique
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® Az

Fig. 2. EightE.-subcells (dashed lines) surround a standard FDTD node of
E. on the Yee cell (solid lines). Circles) and black dots«) represent the
magnetic and electric field components defined on the Yee cell, respectively.
The centers of the subcells represented by crossgsue the field sampling
points for the multiresolution grid.

allows twice as coarse grid as the FDTD method.

The following eight rectangular-pulse functions are consid-
ered to be a set of 3-D orthogonal basis functions that represent
individual subcells:

(11)

(12a)

Lo s, (12b)

for (w, m) = (z, ), (v, j), (2, k)
with [(s) and u(s) defined by
for —1/2<s<0
otherwise

for0<s<1/2
0, otherwise.

(13a)
(13b)

In (13), the factorv/2 is for the orthonormal property of
the functions. The 3-D rectangular-pulse basis functions are
also shown in Fig. 3 in the case of &, node. To satisfy

an orthonormal property of the 3-D rectangular-pulse basis
functions, the magnitudes of the functions are chosen to be
V/8. Then the rectangular-pulse basis coefficiefis,’ for

o, p, ¢ = I, u can be related to the actual field valugs’>?

Ex node
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at sampling points in subcellepg) as
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Fig. 3. 3-D rectangular-pulse basis functions for &k node. Hatched
regions representv/8 and unhatched regions represent zero. Each function
represents an individual subcell.

(14)

Thus, the rectangular-pulse basis coefficiepts’;;! for

ijk o0, p,q = [, uw can be calculated from the 3-D Haar basis
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where I y b : X
1 41 41 +1 41 41 41 17 X, X, x %, % x

+1 -1 +1 +1 -1 -1 +1 -1

+1 41 -1 41 -1 +1 -1 -1 Fig. 4. Schematic diagram of tangential electric fields near a

one-dimensional PEC boundary at = L(’J = 0. Long dashed lines
A= 1 (+1 +1 +1 -1 +1 -1 -1 -1 (- — -) and short dashed lines (- - -) show Haar scaliny and wavelet
- 75 +1 -1 -1 +1 +1 -1 -1 +1 (—%) functions, respectively. Closed circl¢s) show the sampling points

41 -1 41 -1 -1 +1 —1 +1 for the proposed multiresolution grid.

+1 41 -1 -1 -1 -1 41 +41
+1 -1 -1 -1 41 41 +1 -—-1] contrast to the condition presented in [10], the boundary is
(16) located at the position that is shifted Byz /4 from the center
o ) ) ) of the basis functions. This saves a subcell at the boundary
which is a basis transformation matrix between the 3-D Hag{ther than locating the boundary at the center of the basis

basis functions and the rectangular-pulse basis functions. fynctions. Since the tangential electric field at the boundary

(or A~! = AT), where A’ denotes the transpose matrix and

I the identity matrix. Furthermore, it is symmetria® = A. El = 1 (E(? + Eg) —0. (19)
Therefore, it has the important property V2
-1 _ The tangential electric field at = z§ is expanded into a
A=A (17) S ;
Taylor series with respect to = =] as

which allows a simple conversion between the expansion w : “ Nl
coefficients of the rectangular-pulse basis functions and the E(xg) = E(zy) + (a8 —21) E'(21) + -+ (20)
Haar basis functions as and the backward-difference approximation is used for the first

rw Ej;ﬁ 7 Fw gl - derivative

w s ol 1) # B )/

’WE'V w prul : H H u

n Zf’x‘? _A ’nEZ’]’k 7 for w =z, y, » (18) then the second equation is givenzat xj by

n R n 2, .

w hehi) w pulu U =___ ¢ — e

T £ = g5 (B - E)

S e n Biji u

w i [ i | =50 pl

L B, Y e

.’L'u 1 ‘
C. Perfect Electric Conductor (PEC) Boundary Conditions = x—? "7 (Ef5 + Ef). (22)
1

1) One-Dimensional CaseThe implementation of PEC . ] ] o
boundary conditions is first described for the one-dimensiona®!Ving (19) and (22) in terms of the Haar basis coefficients
case. As discussed in [9], the basis functions do not cougfe and £y’ leads to the boundary condition at= 0
at the inner computational nodes, but only at the boundary J
and the excitation nodes. Therefore, the PEC condition is E(‘f =-Ej =
implemented by combining scaling and wavelet functions at
the boundaries such that the tangential electric field at tBamilarly, by using a forward-difference approximation, the
boundaries becomes zero. At the same time, the electric fiBlHC condition for the other side of the boundaryrat
in the subcell situated half a cell size away from the boundacan be obtained as
must be found by interpolation so that the tangential electric “ .
field varies smoothly in front of the boundary. Fig. 4 shows E%, = E%, = % (Ej\}_l - E}@_l). (24)

a one-dimensional PEC boundary placedrat x{, = 0. In 2z — w1)

U
Lo
]

2z

(Ef5 + E;“) (23)
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__________________________________

The PEC conditions (23) and (24) lead to a slightly dis-
torted field distribution, which can be improved by using La- .+ - :
grange interpolation instead of the forward- or the backward-¢<---}-----i-wetecboecdoc ™
difference approximation. Since the tangential electric field ' o
near the boundary is considered to be an odd function about the
boundary, a third-order interpolation polynomial is obtained by
using only two reference points as known field values. Thisi.:""

,,,,,,,,,,,

is the same requirement as is used in the central-difference

approximation for the first derivative in the Taylor series of ;

(20).
In the case of a PEC boundary at= 0, the electric field
EY atz = z¥ is interpolated from those at = ! and .

The third-order Lagrange coefficient polynomials are given by§

2{(z)® — (#3)*}

Li(z) = (25a)
) = D - @b
2{(@)? - (@)%}
Ly(z) = . (25b)
) = L — e
Thus, E§ is given by Lagrange interpolation as
T 1 P 0
By =5 (EO — E! )
= Ly(z§) B} + La(a§)Es
w1 : w1 :
= Ly(al) - E(Ef5 + B} ) + La(af) E(Ef—i-E;“).
(26)

Solving (19) and (26) in terms off and E{ leads to an
improved PEC boundary condition at= 0

Ey = - EY
— i) (L + BY ) + Lao) (B + EY) ). @D)

Similarly, the PEC boundary condition at = x; can be
obtained as

EJ(;\Z = EJQ\Z
1 J
= §{LM—1($§\4) (qu\bl—l - E}Q—l)
+Lar—a(hy) (EJ[;\ZfQ - E;\ZQ)} (28)
where the coefficient polynomials are given by
a{(x)? - (97%4—2)2}
v-1() w1 {1 — (@)%}
2{(@)? - (=}_1)%}
Ly—2(z) = — o - (29b)
M= zh o {(@hr_0)® = (2h1)%}

~z=(k+1/4)Az
|

| z=kAz

PEC conductor
z=(k-1/4)Az

Fig. 5. Location of a PEC boundary parallel to thg-plane (thick solid
line). A unit Yee cell is marked by thin solid lines.

Then, the tangential electric fields, and £, at the boundary
are set to zero as described for the one-dimensional case.
At z =0 (¢ = 0), the 3-D PEC conditions are given by

wpens m§
ZUEog'k——rLngjk
_ TG (g | w pné
= 2% (wEDE + 1 ELE),
1

forw =y, zandn, £ =¢, . (31)
For the other side of the boundary at= xp; (i = M), with
the same pairs, the conditions are given by

;UEJ(;\SZi ::E;{Z'fk

‘/Eu B xl w w /
= an ey (VBN - VB ).
forw =1y, » andn, £ = ¢, 9. (32)

The boundary conditions for the other directions can be
derived similarly. Equations (31) and (32) are computed for
all the pairs of the basis functions. The implementation of
the Lagrange interpolation technique is also available in the
three-dimensional case.

2) 3-D Case: To implement the PEC condition that is per- T0 give a clear view of the implementation of the PEC
pendicular to thes-axis in three space dimensions, the thre€ondition, the implementation of the perfect electric planer
dimensional Haar basis functions are divided into four paif@nductor is described in the following. Referring to the
in such a way that the functions having the same variation fiptations in Fig. 2, we assume, as shown in Fig. 5, that the

y- and z-directions form a pair as follows:

PEC boundary is parallel to they-plane and cuts across
the center of the four subcelldl, [ul, I, anduul at z =

(k — 1/4)Az. Then the field values in the upper subcells
U, luw, wluy and wuw at 2 = (kK + 1/4)Az are determined
by interpolation between the fields on the conductor, which
are zero, and the fields in the subcélls [ul, wll, anduul at
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TABLE |
CoMPARISON OF THENUMBER OF DEGREES OFFREEDOM (NDF), THE
NORMALIZED DOMINANT RESONANT FREQUENCY, AND THE COMPUTATIONAL TIME

No. of No. of proposed conventional
Yee cells  time steps technique FDTD
norm. CPU norm. CPU
NDF freq.  time* NDF freq. time*
(sec) (sec)
4x4x2 1500 1536 .9908 3.3 192 .9805 2.8
8x8x4 3000 12288 .9966 129 1536 .9952 6.4
16x16x8 6000 98304 .9990 193.2 12288 .9988 304
32x32x16 12000 — — — 98304 .9997 456.8
*CPU time on HP9000/C160 workstation 6
Er=19 6
z = (k + 3/4)Az. By taking simple averaging, we have af /
"""" - 2
3
-w Ul -
w ik r 0 8 5 7 }
w pllu ;
n E@jl; WES (@
w U
nEijll; 0 Fig. 6. Three-dimensional rectangular cavities analyzed in this study.
w prult 1 0
g ﬂ’; =35 wElul ) for w = Z,y. (33)
n i 2 [nijkt1 TABLE I
w E;ﬁi ;‘L’E;‘Jl,f +1 NORMALIZED DOMINANT RESONANT FREQUENCIES OFRECTANGULAR CAVITIES
w puwl 0 v
n Ez] k w pruul cavity prop(?sed conventional % difference analytical
_TL;) E'Zujliu ] L £ 1 - technique FDTD

. y (i) — ()
. - O] () e
Hence, the 3-D Haar basis coefficients foy and £, compo- (Yee cells)  (Yee cells) (i)
nents can be calculated using the basis transformation matrix @) 0.07542 0.07486

+0.75 0.07511
A as (18). (6x4x3)  (12x8x6)
(b)  0.05302 0.05228 +1.42 0.05221
D. Absorbing Boundary Conditions (oxdx3)* (12x8x6)
. . o (©) 0.02764 0.02661 +3.87 -~
Mur’s first-order ABC has been implemented in this paper. (10x4x3)*  (20x8x6)
The ABC'’s in the traditional FDTD method can be imple- (d) 0.03834 0.03908 -1.89 —
mented independently for each coefficient associated with the (10x5x3)" (20x8x6)
three-dimensional Haar basis function. The outgoing wave "nonuniform grids

associated with each basis function is absorbed independently
by eacr? gorrespondlng ABC' Thferefore, the 'mplemgnta“%grees of freedom and one having an eighth the number of
of ABC’s in the new multiresolution technique is similar to

the traditional FDTD method. degrees of freedom. o .
Four rectangular cavities loaded with inhomogeneous di-

electric materials described in [15] were then analyzed with the
lll. V ALIDATION proposed technique. The dominant resonant frequencies were

The accuracy and the computational time of the new miompared with analytical values (when available) and those
tiresolution technique were first investigated by analyzing @tained with the conventional FDTD method. The geometries
rectangular cavity with normalized dimensions @b./2 x  Of the four cavities are shown in Fig. 6 and the results are
0.5v/2 x 0.2 for a TE1;o mode having a normalized dom-summarized in Table Il. The number of cells in the proposed
inant resonant frequency of 1.0. (The normalized speed t6£hnique was approximately an eighth of the number of
light was assumed to be unity.) The number of time stefPTD cells so that the number of degrees of freedom was
was determined so that the computed resonant frequendi@groximately the same for both methods. To discretize the
converge. The excitation occurred at the center of the cavligometry of the dielectric materials accurately, nonuniform
with a raised-cosine-modulated sine wave pulse, which had)dds were incorporated in the cases (b)—(d). In the case of the
normalized center frequency of approximately 1.0. The tinf®omogeneous dielectric cavity (a), the results obtained with
discretization interval was chosen to be 0.8 times the Courdfith methods agreed withit1% for the same number of
limit for both methods. By selecting a time discretizatioslegrees of freedom.
interval twice that of the traditional FDTD method, the com- In this new multiresolution technique, the inhomogeneous
putational time was approximately half that of the traditionalielectric interfaces have an anisotropic property due to the
FDTD method for the same number of degrees of freedompproximate treatment of the interfaces. Suppose the dielectric
The results are summarized in Table I. Both the accuracy ainterface is now located at the interface of the Yee cells.
the computational time of the proposed technique lie betwe8mce each unit Yee cell is divided into eight subcells, and
those of a conventional FDTD having the same number elch subcell includes three electric and three magnetic field
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HIGHER ORDER I;FEA;BOII:IEN'II'”FREQUENCIES IN A 03 ~~.;’..,'/”'};’\\\
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2T | TE330. ) Fig. 8. Field distribution at time step of 1200 for th&'E;jo
3 : h (¢, 7 =1, 3,5, ---) higher order mode analysis.
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Normalized frequency

Fig. 7. Frequency spectrum of the higher order mode in a cavity analyzed
with the proposed technique. Fig. 9. Microstrip low-pass filter configuration under investigation. The
dimensions are in millimeters, and the numbers in parentheses show the

sampling points collocated at the center of the subcell, tHgmPers of Yee cells.

subcell located at each side of the interface includes two

tangential and one normal electric field component to the |v. ANALYSIS OF MICROSTRIP PLANAR CIRCUITS

interface. Then the tangential electric fields sense an average : . . N
. . : . wo configurations, a low-pass filter and a spiral induc-

dielectric constant between each side of the interface, where as

of, were analyzed with both the proposed technique and

the normal electric field senses a dielectric constant specifﬁ;l% conventional EDTD method. Mur's first-order ABC was

at each side. Therefore, the dielectric constants become.an .
. . . . implemented to extract theis-parameters. The results were
isotropic at a layer on each side of the interface.

. ) : o compared to demonstrate the capability of the new technique
This approximate property generates instability problerrigcs)r analyzing realistic microwave components. The computa-
when analyzing structures with inhomogeneous dielectric ma- yzing P L P

. L X ion was done on a HP9000/C160 workstation.
terials, although it is stable for structures with homogeneous
dielectric materials. The dielectric interface can be accurately
modeled by introducing thé—H formulation of Maxwell’'s A. Microstrip Low-Pass Filter
equations which will be discussed later. It is also noted that,The proposed technique was applied to the analysis of the
in the analysis of open boundary structures such as microsticrostrip low-pass filter shown in Fig. 9 [16]. The Yee grid
components, the approximate scheme is stable enough for tilAés used in the analysis are shown in the figure together
signals to converge. with the geometrical dimensions. Nonuniform grids were

Although the analyses so far incorporate PEC boundari@gorporated only in the proposed technique to accurately
modeled with simple forward- or backward-difference apjiscretize the geometry of the circuit.
proximations, the PEC boundaries modeled with LagrangeThe structure was also analyzed with the conventional
interpolation improve the field distributions more smoothly=DTD method using the spatial discretization described in
The higher order resonances in a cavity with normalizgde]. The time discretization was chosen to be 0.98 times the
dimensions1/v2 x 1/v2 x 1/y/2 were analyzed in the Courant limit for both methods. The excitation pulse was a
following. The cavity was discretized with 16 16 x 16 Yee raised-cosine pulse having a duration time of 66.3 ps. The
cells and excited with a sine-modulated raised-cosine-wagénter frequency of the excitation pulse was approximately
pulse, which had a normalized center frequency of 3.0. Thg GHz. The analysis conditions for both methods are listed
calculation was done for 3000 time steps wilt equals 0.8 in Table IV. The discretization was such that the number of
times the Courant limit, which ig&\z = 0.0198. The analytical degrees of freedom was approximately the same for both
and computed normalized resonant frequencies are compasgsthods. Because, in the proposed technique, the minimum
in Table I1l. The frequency spectrum and the field distributiogrid dimension was approximately twice that of the conven-
at time step of 1200 are shown in Figs. 7 and 8, respectivefional FDTD method, the time discretization interval could be



FUJII AND HOEFER: 3-D HAAR-WAVELET-BASED MULTIRESOLUTION ANALYSIS 2471

TABLE IV filter structure, therefore, it did not appear after passing the
ANALYSIS CONDITIONS FOR THEMICROSTRIP LOW-Pass FILTER filter. This ripple also had a static feature; it did not change in

proposed  conventional time. Therefore, it did not affect the computé&dparameters
technique FDTD either. In case the smooth field distributions are desired, one

No. of Yee cells 49%39x8  100x80x16 can obtain them from the scaling function coefficients by using

(non-uniform)  (uniform) int lati techni
At 0.67694 ps  0.43325 ps some interpolation technique.
No. of time steps 2560 4000
computational time 11m 32.5s 20m 45.5s B. Spiral Inductor

A two-turn spiral inductor shown in Fig. 13 was inves-

07 tigated. The relative permittivity and the dimension of the
06 substrate were 9.6 and 50 mm 50 mm, respectively. The
dimension of the inductor was 18 mm 18 mm. The cutoff
frequency of the inductor was around 2.5 GHz. Uniform grids
were incorporated to discretize the structure for both methods
except for thez-direction in the upper air region in the mul-
tiresolution technique. The discretization conditions and the
calculation time are listed in Table V. The time discretization
is also 0.98 times the Courant limit. The excitation pulse was
a raised-cosine pulse having the duration time of 333 ps. The
center frequency of the excitation pulse was approximately
02 04 06 (%i?“e(n;) 12 14 16 18 3 GHZ.. . - . .

The time signals obtained with the proposed technique are
Fig. 10. Time signals of the low-pass filter computed with the proposeshown in Fig. 14. The time signals decayed more slowly than
technique. The maximum time step is 2560. —: input port, - - - output POy, <6 iy the low-pass filter analyzed in the previous subsection
due to the long line length of the spiral inductor and the
larger permittivity of the substrate. The extensive computation
showed that the proposed technique was stable up to the time
step of 10. The S-parameters of the inductor are shown in
Fig. 15 for both methods. It should be mentioned that due

0.5

0.4

0.3

0.2

Voitage

0.1

-0.1

-0.2

-0.3
0

% * \ / to the large permittivity of the substrate, a large reflection
§ -30 . from the ABC was observed for both methods. Thus, in
g i | s21 calculating the reference data at the input port, computation
@ 40 was terminated by the time the reflection from the ABC

reached the input port. This treatment made the energy of
the reference signal smaller than that of the signals from the
inductor and resulted in the magnitude of tHeparameters
20 being larger than 0 dB. In order to eliminate this discrepancy,
the S-parameters in Fig. 15 were offset by abe@.3 dB. The
Fig..ll. Compute(ﬂ—parameters of the low-pass filter. —: proposed methoqesumng S-parameters demonstrate good agreement of both
- - -1 conventional FDTD method. . .
methods except for the small signal region beled0O dB.
) ] ] The snapshots of a&. field immediately below the mi-
approximately twice that of the conventional FDTD methogyostrip conductors at time 1.72 ns are plotted in Fig. 16. In

This allowed the calculation time for the proposed methagle proposed technique, a ripple was observed on the excitation
approximately half that of the conventional FDTD method. gjge of the inductor as well as in the low-pass filter analysis.
The resulting time signals and tk&parameters are shown

in Figs. 10 and 11, respectively. The&parameters indicate
good agreement between both methods, except for slight
deviations in the high-frequency range over 16 GHz and in the
small signal range below30 dB. The time signals were taken The exact formulation for three-dimensional inhomo-
until 2560 time steps for the new multiresolution techniqué€neous dielectric structures is obtained by discretizing
The extensive numerical analysis showed that the scheme Wixwell's equations (1a) and
stable at 10 time steps. oD

The snapshots of thes. field immediately below the VxH= a +J (34)
microstrip conductors at time 346.6 ps are plotted in Fig. 12. In , .
the proposed technique, a ripple was observed on the excitaflfl the material equation
side of the filter, while in the conventional FDTD method, the D= <E (35)
waveform was smooth. This ripple was due to the interaction
between the incident pulse and the signal reflected from tiwbere the conductivity of the material is assumed to be zero.

-50

-60

10
Frequency (GHz)

V. EXACT FORMULATION FOR THREE-DIMENSIONAL
INHOMOGENEOUSDIELECTRIC STRUCTURES
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@ (b)

Fig. 12. The snapshots of af. field distribution at time 346.6 ps in the low-pass filter immediately below the conductors.
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- ] g a0 R WL
2 6 input 8 a
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40 |-
2 E€r=9 .6
-45
Fig. 13. Spiral inductor configuration under investigation. The dimensions O s 1 15 2 25 3 a5 4 45 s
are in millimeters. The line widths and spacings are all 2.0 mm. The height ’ " Frequency (GHz) |
and the span of the air bridges are 1.0 and 6.0 mm, respectively.
Fig. 15. ComputedS-parameters of the spiral inductor. —: proposed
method, - - -: conventional FDTD method.
TABLE V
ANALYSIS CONDITIONS FOR THE SPIRAL INDUCTOR
t‘;‘;‘:ﬁ:‘;‘i C°“P‘fg‘$‘]g“al The electric flux densityD,, for example, is expanded using
Yoo oolls 52x42x13 10068 %26 the 3-D Haar basis functions (2) as
(non-uniform) (uniform)
Ax, Ay 0.8 mm 0.5 mm I J K N
Az 0.5 mm, 0.4524 mm 0.25 mm -
? D & =
At 0.37274 ps 0.21535 ps =(7 1) Z Z > n(®)
time steps 23110 40000 =0 j=0 k=0 n=0
CPU time 3h 38m 2.9s 5h 4m 32.5s fetected
. {Z‘Di-l—l/Q,j, k Pir1y2(z) 5 (y) Pr(2)
G
T 0D 1 Piriy2(2) 05 (y) Yi(z)
PU
o4 + Z‘Di+1/27j7 k ¢i+1/2($) Z/}J(y) Pr(2)
0.35 ;
pbd
03 . + Z‘Di+1/27j7 k ¢i+1/2($) ¢;(y) Pr(2)
I i)
025 + f’;DiH/g, N ¢i+1/2(x) Pi(y) ¥u(z)
02 : bepp
% 045 +2Di+1/27j7k1/}i+1/2($) (/)J(y) W(z)
S Yo
7 o + ZDZ‘.H/Q, gk Z/}i+1/2(37) ¥; () on(2)
0.05 o
; _ LD g P2 (@) Ui () | (36)
-0.05 ]
01 where the notations are defined as in (6) and (7).
o 1 2

Tmeng © % °® Then, the similar procedure used for (8) and (9) leads to the

< of th Lind o with th time iterative difference equations with the weighted voltage
Fig. 14. Time signals of the spiral inductor computed with the propos _ wISnE — wpsné _
technique. The maximum time step is 23 110. —: input port: output port. e&'cross the nOden ka - n Di,j,k Aw for w = z, ¥ %
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(@) (b)

Fig. 16. The snapshots of afi. field distribution at time 1.72 ns of the spiral inductor immediately below the microstrip conductors.

and¢(, n, & = ¢, 1 as a unit Yee cell as
@ yené :@Iénf_g Az w o opq w o
h*0hh L 0hh w Ay Az Ol wD“p’iI = C“p’i] wE“pkq’ for w = Zz, Y, %. (39)

{BVenE - ava - Vet - sver} GTa) o |
This can be rewritten in a matrix form as

i =45 - 2 o
v hOh h™hOh AZ A.’L’ w _ w
¢ fu e h0h< ¢ cne [“Eijilree = [e5klree [“Dijklree;  fOrw=um,y, 2
BVt - avias - Gvier —aved)} @) (40)
i i where
cpime _zpome At Az
h*hh0 — LTRRO w Axr Ay 100 —wElll -
L A h ik
Yy CmE _ yyEné &3 ¢né w pritu
: {gvli?o —6Voro — V1o — 0 Vhoo )} (37¢) Tk
E‘L'Lk
1k
and w w gl
[ Eijk]rec = zuE;szﬁ (41)
eppCnE _appont o ap| _OF w it
1Wroo =0Wgroo + AyAz| 0 Eijkl
27CnE _ = pCné _ (yCnE _ y pCnEy _ @ 7CnE w ok
’ {hIhZO —idie = Glron — wdnorn) — hIth} LB
(38a) @ DI 7
IR
¢né _ ¢n§ Y ij
W =0Worg + &1 [AZ AJJ 0hO LUDZ;I;
N . 'IUD'{L'
¢ng ¢né z7Cmé _ z y(mg Y 7¢ng Wy, — ijk
) {fLIO;Zh - a}L;IO;Zﬁ - (ZI}LZO - ZI]]Z()) - ZIO;ZO} [ DUk]TeC - ll)Di:I]ll’il (42)
w yulu
(38b) | D?jkz
Az D
z176mE _ a2yr76mé oty T,
IWO(;?h _OWO(;?h + At|:A.Z‘ Ay} _wDZujliu_
00h

) {yICUE Lyt eyt @ty zf(nf}
rthor ~ hifon h=0hh — h=oLn h=00h [- -1 : ; i
(38¢) and [eijk} is shown in (43) at the bottom of the following

page. Since the matriA is the basis transformation matrix

The material equation (35) can be also discretized using 3aBtween the rectangular-pulse basis functions and the Haar
Haar scaling and wavelet basis (2) as discussed in [13] in th@sis functions, (40) can be transformed into the Haar basis
case of Battle—Lemarie scaling and wavelet basis. Howeveggfficients using relation (17) as
in the case of 3-D Haar scaling and wavelet basis, it is
more simply discretized with using the basis transformatior 1 w
matrix A. For isotropic dielectric materials, the material (35 Eijilranr = |:Cijk:|Haar[ DijkJpan, forw =z, y, 2,
is written for a rectangular subcelbpq) for o, p, ¢ =1, v in (44)
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where

[* Eijr]Haar =

[wDijk]Haar =

and

,1:|
€.
|: igk Haar

=[],

w0 pboP

E
g

w0 D;ﬁ¢ -
w Djﬁw
w D?ﬁié
ol
w Dfﬁiw

v Dy ]
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A.

(45)

(46)

(47)

Fig. 17. An E. field distribution of the centered-dielectric-slab loaded
rectangular cavity shown in Fig. 6(b) at time step of 2389.

and

(51)

ijk

uwul
“ijk

wlu
“ijk

luw

Hu  Jlul
Cigk € Cisk

wll
ik €

€ Cijk

i
1 11 1 1 1 1 1 1
e = _——_— — — — —
“igk

“ijk
In the time-stepping algorithm, (44) is computed after the flux
density D is updated by (38).

A TE;19 mode of the centered-dielectric-slab loaded rect-
angular cavity shown in Fig. 6(b) was analyzed with this

formulation. The number of Yee cells used in the analysis
was 14 x 8 x 6 and nonuniform grids were incorporated.

The transformed matri){‘f;ji]Haar can be reduced to aWIth At being 0.8 times the Courant |Im|t, which wast =
simple matrix having a highly symmetric representation

0.698 ns, 2389 time steps were performed. The extensive
computation showed that the exact formulation was stable

[c;jﬂ =A [c:ﬂ A at 10 time steps, and no instability was observed. THe
Haar o a”eca o o e ae field plot demonstrates smooth field distribution as shown
al a2 af’ a4 o aﬁ a7 as in Fig. 17. Although this scheme takes longer computational
Of al o Of a?’ a4 Of a7 time than the formulation described in Section Il for the
a?’ o al a7 Of as a4 Of approximate treatment of inhomogeneous dielectric materials,
= Of Of Oj al as Oj a?’ o it can be applied only at the dielectric interface to improve the
L A computational efficiency.
g (g Qg 2 Q7 1 G5 Q3
a7 s aoasoas s oz VI. CONCLUSIONS
Lag a7 g a3 g a3z e o )
(48) A three-dimensional multiresolution analysis procedure sim-
ilar to the FDTD method has been derived by using three-
where the inner products dimensional Haar scaling and wavelet functions. The resulting
q _ fori—1 2 g 49 method has been tested and validated by analyzing several
o =ga;ce -, fore=4,2, -, (49) cavity structures including inhomogeneously dielectric loaded
with the column vectors; (i = 1, -- -, 8) ande" defined by rectangular ca}vmes. The me.thod has also been apphgd to the
analysis of microwave passive structures such as microstrip
A = [a; ay a3 a4 a5 ag ay ag| (50) low-pass filters and spiral inductors.
e -
o 0
1/eij .
_ 1/6741"
1 _ ik
|:6ijk:|1’€c N K 1/6%;5 (43)
/ety
0 /e

1/ ]
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The resulting S-parameters are in good agreement witfl5] D. H. Choi and W. J. R. Hoefer, “The finite-difference—time-domain
those obtained with the conventional FDTD method. However, Method and its application to eigenvalue problem&EE Trans. Mi-

crowave Theory Techvol. MTT-34, pp. 1464-1470, Dec. 1986.

the field distribution plots show small distortions in the propie; p. M. Sheen, S. M. Ali, M. D. Abouzahra, and J. A. Kong, “Application
posed method. The calculation time for the proposed method of the three-dimensional finite-difference time-domain method to the

was approximately half that of the equivalent conventional
FDTD method.
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