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the FDTD Method—Derivation
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Abstract—A three-dimensional (3-D) multiresolution analysis
procedure similar to the finite-difference time-domain (FDTD)
method is derived using a complete set of three-dimensional
orthonormal bases of Haar scaling and wavelet functions. The
expansion of the electric and the magnetic fields in these basis
functions leads to the time iterative difference approximation
of Maxwell’s equations that is similar to the FDTD method.
This technique effectively models realistic microwave passive
components by virtue of its multiresolution property; the compu-
tational time is reduced approximately by half compared to the
FDTD method. The proposed technique is validated by analyzing
several 3-D rectangular resonators with inhomogeneous dielectric
loading. It is also applied to the analyses of microwave passive
devices with open boundaries such as micrstrip low-pass filters
and spiral inductors to extract their S-parameters and field
distributions. The results of the proposed technique agree well
with those of the traditional FDTD method.

Index Terms—FDTD method, Haar wavelets, multiresolution
analysis.

I. INTRODUCTION

NUMERICAL computation has become a powerful and
important technique for solving electromagnetic prob-

lems. This is due to increased computer performance as well
as to growing complexity of problems that must be solved.
Time domain methods such as finite-difference time-domain
(FDTD) [1] and transmission line matrix (TLM) [2] methods
are gaining importance by virtue of their versatility and the
natural way in which they simulate what happens in reality.
Nevertheless, these methods are limited by available computer
memory and computational time.

In the meantime, wavelet analysis has been vigorously
studied in the field of mathematics [3], [4]. It has been
reported that wavelet analysis can be applied to frequency-
domain electromagnetic analysis via the method of moments
to improve computational efficiencies due to the orthonormal
and multiresolutional nature of the wavelet functions [5].

The following time-domain techniques have recently
been proposed to improve computational efficiency: the
Battle–Lemarie-wavelet-based multiresolution time-domain
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(MRTD) technique [6], [7], the Daubechies-wavelet-based
technique [8], and a multigrid technique using Haar wavelets
[9], [10]. These techniques have been applied to analyze
three-dimensional (3-D) cavity resonator problems [7], [11],
two-dimensional field distributions in microstrip lines [9], [12],
and three-dimensional cavities with various inhomogeneous
dielectrics [13]. Although these techniques have complex
dispersion properties [14], it has been pointed out that they
have the advantage of requiring less computational effort than
other time-domain techniques.

This paper describes the derivation and the application
of an FDTD-like multiresolution technique based on Haar
wavelets. It is formulated in three-dimensional space and time
using Haar scaling and wavelet functions at one scaling level.
A complete set of orthonormal bases in three-dimensional
real-space is first created using Haar scaling and wavelet
functions. The field components in the– formulation of
Maxwell’s equations are then expanded in the orthonormal
bases. Subsequently following Galerkin’s procedure of the
method of moments, it leads to FDTD-like time-iterative
difference equations that are individually applied to each
basis function. For structures with inhomogeneous dielectric
materials, dielectric materials are treated in an approximate
manner where the relative permittivity has an isotropic prop-
erty at the interfaces of different dielectric materials. An exact
treatment for analyzing inhomogeneous dielectric materials
will be discussed in the last section; this exact formulation
leads to a stable algorithm. The perfect electric conductor
(PEC) boundaries are first formulated using simple forward-
or backward-difference approximation. The PEC boundaries
are then improved by using Lagrange interpolation to analyze
higher order modes in a cavity. Mur’s first-order absorbing
boundary condition (ABC) is implemented in this paper.
ABC’s can be implemented similarly as in the conventional
FDTD method. In the case of the Haar scaling and wavelet
basis functions, a basis transformation matrix was found to
be useful for sampling field values from wavelet expansion
coefficients.

Several rectangular cavities with inhomogeneous dielectric
loading were analyzed to validate the proposed technique.
The results were then compared with analytical results (when
available) and with data obtained by a conventional FDTD

0018–9480/98$10.00 1998 IEEE



2464 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 12, DECEMBER 1998

analysis having the same number of degrees of freedom; the
comparison was under a condition that the same amount of
computer memory was involved in both methods. Furthermore,
the proposed technique is also applied to analyze microstrip
low-pass filters and spiral inductors with open boundaries to
extract their -parameters and field distributions. The results
were compared to those obtained with the conventional FDTD
analysis. These analyses demonstrate the suitability of this new
technique for solving practical microwave problems.

The required computer resources are discussed and com-
pared with those of the conventional FDTD method. The
multiresolution technique has a potential capability of reducing
the computational effort by thresholding small coefficients
[11]; the unknown coefficients that are smaller than a certain
value can be omitted without affecting the computational
accuracy. However, thresholding has not been implemented in
this paper. Although the accuracy and the memory requirement
of this new procedure are similar to those of a conventional
FDTD method having the same number of degrees of free-
dom, the multiresolution technique based on Haar wavelets is
approximately twice as fast.

II. FORMULATION

A. 3-D Basis Functions and Time Iterative
Difference Equations

The field components in Maxwell’s curl equations

(1a)

(1b)

are expanded in the following eight orthonormal basis func-
tions. Those basis functions are products of three-dimensional
combinations of the Haar scaling and wavelet func-
tions [3] multiplied by a rectangular pulse function in time

as follows:

(2)

where

(3a)

(3b)

for

and

for
otherwise

(4)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1. Three-dimensional Haar basis functions for anEx node. Hatched
regions represent+1 and unhatched regions represent�1.

with the space and time discretization intervals, , ,
and . Instead of the definition of and in [3], the
following must be used to obtain appropriate inner products
when applying Galerkin’s procedure as described later

for
for

otherwise
(5a)

for
for

for
for

for and otherwise

(5b)

The basis functions (2) have the support (or the width
of the function having nonzero value) equal to the spatial
discretization intervals , and . The spatial basis
functions for an node are shown as an example in Fig. 1.
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In Cartesian coordinates, the expansions of the electric field
and the current density, and for example, are given by

for and (6)

and the expansion of the magnetic field, for example, is
given by

(7)

where the notations are consistent with those used in [7]
except that the field value with and

denotes the expansion coefficients in terms
of the Haar scaling and wavelet functions at time step
and position . The remaining field components can
be expanded similarly.

Subsequently, each component is substituted in Maxwell’s
equations (1), and then, by following Galerkin’s procedure of
the method of moment, the resulting expressions are tested
with the basis functions (2). This leads to time iterative
difference equations in terms of the voltage across the-
node , the current flowing at the -node

, and the current source at the-node

, with cyclic and
as

(8a)

(8b)

(8c)

and

(9a)

(9b)

(9c)

where the left hand side subscripts 0, , and 1 denote
, and , respectively, and the right hand side

subscript, for example, denotes ,
and so forth. The coefficients are given by

(10a)

(10b)

(10c)

for , and cyclic. The material constants ,
and are defined as a common value in a unit Yee
cell. Equations (8)–(10) are the same as those appearing in
the traditional FDTD method. The only difference is that
in the multiresolution method, the equations are computed
independently for each basis function (2).

B. Relation Between the Haar Basis Coefficients
and the Actual Field Values

In this multiresolution technique, the space is discretized us-
ing the conventional Yee cell. However, to relate the expansion
coefficients to the actual field values, the Yee cell is divided
into eight subcells in such a way that the original field node
on the Yee cell is surrounded by the eight subcells. We call
“subcell” an elementary cubic volume that surrounds a point
(node) at which a discrete field component is defined in 3-D
space. The example of an node is shown in Fig. 2. The
subcells are named , and so on, corresponding to
the lower or upper position with respect to the Yee’s
field node along the -, -, and -axes. The centers of the
subcells are field sampling points of the new multiresolution
grid. We call the center of the subcells “sub node.” As one can
deduce from Fig. 2, each subcell on the multiresolution grid
comprises three electric and three magnetic field components.
The number of degrees of freedom for the multiresolution
technique is eight times that of the traditional FDTD method
having the same Yee grid size. This means that for the same
number of degrees of freedom, the multiresolution technique



2466 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 12, DECEMBER 1998

Fig. 2. EightEx-subcells (dashed lines) surround a standard FDTD node of
Ex on the Yee cell (solid lines). Circles (�) and black dots (�) represent the
magnetic and electric field components defined on the Yee cell, respectively.
The centers of the subcells represented by crosses (�) are the field sampling
points for the multiresolution grid.

allows twice as coarse grid as the FDTD method.
The following eight rectangular-pulse functions are consid-

ered to be a set of 3-D orthogonal basis functions that represent
individual subcells:

(11)

where

(12a)

(12b)

for

with and defined by

for
otherwise

(13a)

for
otherwise.

(13b)

In (13), the factor is for the orthonormal property of
the functions. The 3-D rectangular-pulse basis functions are
also shown in Fig. 3 in the case of an node. To satisfy
an orthonormal property of the 3-D rectangular-pulse basis
functions, the magnitudes of the functions are chosen to be

. Then the rectangular-pulse basis coefficients for

can be related to the actual field values

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. 3-D rectangular-pulse basis functions for anEx node. Hatched
regions represent+

p
8 and unhatched regions represent zero. Each function

represents an individual subcell.

at sampling points in subcells as

(14)

Thus, the rectangular-pulse basis coefficients for
can be calculated from the 3-D Haar basis
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coefficients for as

(15)

where

(16)

which is a basis transformation matrix between the 3-D Haar
basis functions and the rectangular-pulse basis functions.

Matrix has the orthogonality property
(or ), where denotes the transpose matrix and

the identity matrix. Furthermore, it is symmetric: .
Therefore, it has the important property

(17)

which allows a simple conversion between the expansion
coefficients of the rectangular-pulse basis functions and the
Haar basis functions as

for (18)

C. Perfect Electric Conductor (PEC) Boundary Conditions

1) One-Dimensional Case:The implementation of PEC
boundary conditions is first described for the one-dimensional
case. As discussed in [9], the basis functions do not couple
at the inner computational nodes, but only at the boundary
and the excitation nodes. Therefore, the PEC condition is
implemented by combining scaling and wavelet functions at
the boundaries such that the tangential electric field at the
boundaries becomes zero. At the same time, the electric field
in the subcell situated half a cell size away from the boundary
must be found by interpolation so that the tangential electric
field varies smoothly in front of the boundary. Fig. 4 shows
a one-dimensional PEC boundary placed at . In

Fig. 4. Schematic diagram of tangential electric fields near a
one-dimensional PEC boundary atx = x

l
0
= 0. Long dashed lines

(– – –) and short dashed lines (- - -) show Haar scaling(�) and wavelet
(� ) functions, respectively. Closed circles(�) show the sampling points
for the proposed multiresolution grid.

contrast to the condition presented in [10], the boundary is
located at the position that is shifted by from the center
of the basis functions. This saves a subcell at the boundary
rather than locating the boundary at the center of the basis
functions. Since the tangential electric field at the boundary
is zero, the first equation is given by

(19)

The tangential electric field at is expanded into a
Taylor series with respect to as

(20)

and the backward-difference approximation is used for the first
derivative

(21)

then the second equation is given at by

(22)

Solving (19) and (22) in terms of the Haar basis coefficients
and leads to the boundary condition at

(23)

Similarly, by using a forward-difference approximation, the
PEC condition for the other side of the boundary at
can be obtained as

(24)
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The PEC conditions (23) and (24) lead to a slightly dis-
torted field distribution, which can be improved by using La-
grange interpolation instead of the forward- or the backward-
difference approximation. Since the tangential electric field
near the boundary is considered to be an odd function about the
boundary, a third-order interpolation polynomial is obtained by
using only two reference points as known field values. This
is the same requirement as is used in the central-difference
approximation for the first derivative in the Taylor series of
(20).

In the case of a PEC boundary at , the electric field
at is interpolated from those at and .

The third-order Lagrange coefficient polynomials are given by

(25a)

(25b)

Thus, is given by Lagrange interpolation as

(26)

Solving (19) and (26) in terms of and leads to an
improved PEC boundary condition at

(27)

Similarly, the PEC boundary condition at can be
obtained as

(28)

where the coefficient polynomials are given by

(29a)

(29b)

2) 3-D Case: To implement the PEC condition that is per-
pendicular to the -axis in three space dimensions, the three-
dimensional Haar basis functions are divided into four pairs
in such a way that the functions having the same variation in
- and -directions form a pair as follows:

(30)

Fig. 5. Location of a PEC boundary parallel to thexy-plane (thick solid
line). A unit Yee cell is marked by thin solid lines.

Then, the tangential electric fields and at the boundary
are set to zero as described for the one-dimensional case.

At , the 3-D PEC conditions are given by

for and (31)

For the other side of the boundary at , with
the same pairs, the conditions are given by

for and (32)

The boundary conditions for the other directions can be
derived similarly. Equations (31) and (32) are computed for
all the pairs of the basis functions. The implementation of
the Lagrange interpolation technique is also available in the
three-dimensional case.

To give a clear view of the implementation of the PEC
condition, the implementation of the perfect electric planer
conductor is described in the following. Referring to the
notations in Fig. 2, we assume, as shown in Fig. 5, that the
PEC boundary is parallel to the -plane and cuts across
the center of the four subcells , and at

. Then the field values in the upper subcells
and at are determined

by interpolation between the fields on the conductor, which
are zero, and the fields in the subcells , and at
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TABLE I
COMPARISON OF THENUMBER OF DEGREES OFFREEDOM (NDF), THE

NORMALIZED DOMINANT RESONANTFREQUENCY, AND THECOMPUTATIONAL TIME

. By taking simple averaging, we have

for (33)

Hence, the 3-D Haar basis coefficients for and compo-
nents can be calculated using the basis transformation matrix

as (18).

D. Absorbing Boundary Conditions

Mur’s first-order ABC has been implemented in this paper.
The ABC’s in the traditional FDTD method can be imple-
mented independently for each coefficient associated with the
three-dimensional Haar basis function. The outgoing wave
associated with each basis function is absorbed independently
by each corresponding ABC. Therefore, the implementation
of ABC’s in the new multiresolution technique is similar to
the traditional FDTD method.

III. V ALIDATION

The accuracy and the computational time of the new mul-
tiresolution technique were first investigated by analyzing a
rectangular cavity with normalized dimensions of

for a mode having a normalized dom-
inant resonant frequency of 1.0. (The normalized speed of
light was assumed to be unity.) The number of time steps
was determined so that the computed resonant frequencies
converge. The excitation occurred at the center of the cavity
with a raised-cosine-modulated sine wave pulse, which had a
normalized center frequency of approximately 1.0. The time
discretization interval was chosen to be 0.8 times the Courant
limit for both methods. By selecting a time discretization
interval twice that of the traditional FDTD method, the com-
putational time was approximately half that of the traditional
FDTD method for the same number of degrees of freedom.
The results are summarized in Table I. Both the accuracy and
the computational time of the proposed technique lie between
those of a conventional FDTD having the same number of

(a) (b)

(c) (d)

Fig. 6. Three-dimensional rectangular cavities analyzed in this study.

TABLE II
NORMALIZED DOMINANT RESONANT FREQUENCIES OFRECTANGULAR CAVITIES

degrees of freedom and one having an eighth the number of
degrees of freedom.

Four rectangular cavities loaded with inhomogeneous di-
electric materials described in [15] were then analyzed with the
proposed technique. The dominant resonant frequencies were
compared with analytical values (when available) and those
obtained with the conventional FDTD method. The geometries
of the four cavities are shown in Fig. 6 and the results are
summarized in Table II. The number of cells in the proposed
technique was approximately an eighth of the number of
FDTD cells so that the number of degrees of freedom was
approximately the same for both methods. To discretize the
geometry of the dielectric materials accurately, nonuniform
grids were incorporated in the cases (b)–(d). In the case of the
homogeneous dielectric cavity (a), the results obtained with
both methods agreed within 1% for the same number of
degrees of freedom.

In this new multiresolution technique, the inhomogeneous
dielectric interfaces have an anisotropic property due to the
approximate treatment of the interfaces. Suppose the dielectric
interface is now located at the interface of the Yee cells.
Since each unit Yee cell is divided into eight subcells, and
each subcell includes three electric and three magnetic field
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TABLE III
HIGHER ORDER RESONANT FREQUENCIES IN A

CAVITY ANALYZED WITH THE PROPOSEDTECHNIQUE

Fig. 7. Frequency spectrum of the higher order mode in a cavity analyzed
with the proposed technique.

sampling points collocated at the center of the subcell, the
subcell located at each side of the interface includes two
tangential and one normal electric field component to the
interface. Then the tangential electric fields sense an average
dielectric constant between each side of the interface, where as
the normal electric field senses a dielectric constant specified
at each side. Therefore, the dielectric constants become an
isotropic at a layer on each side of the interface.

This approximate property generates instability problems
when analyzing structures with inhomogeneous dielectric ma-
terials, although it is stable for structures with homogeneous
dielectric materials. The dielectric interface can be accurately
modeled by introducing the – formulation of Maxwell’s
equations which will be discussed later. It is also noted that,
in the analysis of open boundary structures such as microstrip
components, the approximate scheme is stable enough for time
signals to converge.

Although the analyses so far incorporate PEC boundaries
modeled with simple forward- or backward-difference ap-
proximations, the PEC boundaries modeled with Lagrange
interpolation improve the field distributions more smoothly.
The higher order resonances in a cavity with normalized
dimensions were analyzed in the
following. The cavity was discretized with 16 16 16 Yee
cells and excited with a sine-modulated raised-cosine-wave
pulse, which had a normalized center frequency of 3.0. The
calculation was done for 3000 time steps with equals 0.8
times the Courant limit, which is . The analytical
and computed normalized resonant frequencies are compared
in Table III. The frequency spectrum and the field distribution
at time step of 1200 are shown in Figs. 7 and 8, respectively.

Fig. 8. Field distribution at time step of 1200 for theTEij0

(i; j = 1; 3; 5; � � �) higher order mode analysis.

Fig. 9. Microstrip low-pass filter configuration under investigation. The
dimensions are in millimeters, and the numbers in parentheses show the
numbers of Yee cells.

IV. A NALYSIS OF MICROSTRIPPLANAR CIRCUITS

Two configurations, a low-pass filter and a spiral induc-
tor, were analyzed with both the proposed technique and
the conventional FDTD method. Mur’s first-order ABC was
implemented to extract their -parameters. The results were
compared to demonstrate the capability of the new technique
for analyzing realistic microwave components. The computa-
tion was done on a HP9000/C160 workstation.

A. Microstrip Low-Pass Filter

The proposed technique was applied to the analysis of the
microstrip low-pass filter shown in Fig. 9 [16]. The Yee grid
lines used in the analysis are shown in the figure together
with the geometrical dimensions. Nonuniform grids were
incorporated only in the proposed technique to accurately
discretize the geometry of the circuit.

The structure was also analyzed with the conventional
FDTD method using the spatial discretization described in
[16]. The time discretization was chosen to be 0.98 times the
Courant limit for both methods. The excitation pulse was a
raised-cosine pulse having a duration time of 66.3 ps. The
center frequency of the excitation pulse was approximately
15 GHz. The analysis conditions for both methods are listed
in Table IV. The discretization was such that the number of
degrees of freedom was approximately the same for both
methods. Because, in the proposed technique, the minimum
grid dimension was approximately twice that of the conven-
tional FDTD method, the time discretization interval could be
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TABLE IV
ANALYSIS CONDITIONS FOR THEMICROSTRIP LOW-PASS FILTER

Fig. 10. Time signals of the low-pass filter computed with the proposed
technique. The maximum time step is 2560. —: input port, - - -: output port.

Fig. 11. ComputedS-parameters of the low-pass filter. —: proposed method,
- - -: conventional FDTD method.

approximately twice that of the conventional FDTD method.
This allowed the calculation time for the proposed method
approximately half that of the conventional FDTD method.

The resulting time signals and the-parameters are shown
in Figs. 10 and 11, respectively. The-parameters indicate
good agreement between both methods, except for slight
deviations in the high-frequency range over 16 GHz and in the
small signal range below 30 dB. The time signals were taken
until 2560 time steps for the new multiresolution technique.
The extensive numerical analysis showed that the scheme was
stable at 10 time steps.

The snapshots of the field immediately below the
microstrip conductors at time 346.6 ps are plotted in Fig. 12. In
the proposed technique, a ripple was observed on the excitation
side of the filter, while in the conventional FDTD method, the
waveform was smooth. This ripple was due to the interaction
between the incident pulse and the signal reflected from the

filter structure, therefore, it did not appear after passing the
filter. This ripple also had a static feature; it did not change in
time. Therefore, it did not affect the computed-parameters
either. In case the smooth field distributions are desired, one
can obtain them from the scaling function coefficients by using
some interpolation technique.

B. Spiral Inductor

A two-turn spiral inductor shown in Fig. 13 was inves-
tigated. The relative permittivity and the dimension of the
substrate were 9.6 and 50 mm 50 mm, respectively. The
dimension of the inductor was 18 mm 18 mm. The cutoff
frequency of the inductor was around 2.5 GHz. Uniform grids
were incorporated to discretize the structure for both methods
except for the -direction in the upper air region in the mul-
tiresolution technique. The discretization conditions and the
calculation time are listed in Table V. The time discretization
is also 0.98 times the Courant limit. The excitation pulse was
a raised-cosine pulse having the duration time of 333 ps. The
center frequency of the excitation pulse was approximately
3 GHz.

The time signals obtained with the proposed technique are
shown in Fig. 14. The time signals decayed more slowly than
those in the low-pass filter analyzed in the previous subsection
due to the long line length of the spiral inductor and the
larger permittivity of the substrate. The extensive computation
showed that the proposed technique was stable up to the time
step of 10. The -parameters of the inductor are shown in
Fig. 15 for both methods. It should be mentioned that due
to the large permittivity of the substrate, a large reflection
from the ABC was observed for both methods. Thus, in
calculating the reference data at the input port, computation
was terminated by the time the reflection from the ABC
reached the input port. This treatment made the energy of
the reference signal smaller than that of the signals from the
inductor and resulted in the magnitude of the-parameters
being larger than 0 dB. In order to eliminate this discrepancy,
the -parameters in Fig. 15 were offset by about0.3 dB. The
resulting -parameters demonstrate good agreement of both
methods except for the small signal region below10 dB.

The snapshots of an field immediately below the mi-
crostrip conductors at time 1.72 ns are plotted in Fig. 16. In
the proposed technique, a ripple was observed on the excitation
side of the inductor as well as in the low-pass filter analysis.

V. EXACT FORMULATION FOR THREE-DIMENSIONAL

INHOMOGENEOUSDIELECTRIC STRUCTURES

The exact formulation for three-dimensional inhomo-
geneous dielectric structures is obtained by discretizing
Maxwell’s equations (1a) and

(34)

and the material equation

(35)

where the conductivity of the material is assumed to be zero.
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(a) (b)

Fig. 12. The snapshots of anEz field distribution at time 346.6 ps in the low-pass filter immediately below the conductors.

Fig. 13. Spiral inductor configuration under investigation. The dimensions
are in millimeters. The line widths and spacings are all 2.0 mm. The height
and the span of the air bridges are 1.0 and 6.0 mm, respectively.

TABLE V
ANALYSIS CONDITIONS FOR THE SPIRAL INDUCTOR

Fig. 14. Time signals of the spiral inductor computed with the proposed
technique. The maximum time step is 23 110. —: input port, - - -: output port.

Fig. 15. ComputedS-parameters of the spiral inductor. —: proposed
method, - - -: conventional FDTD method.

The electric flux density, for example, is expanded using
the 3-D Haar basis functions (2) as

(36)

where the notations are defined as in (6) and (7).
Then, the similar procedure used for (8) and (9) leads to the

time iterative difference equations with the weighted voltage
across the -node for
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(a) (b)

Fig. 16. The snapshots of anEz field distribution at time 1.72 ns of the spiral inductor immediately below the microstrip conductors.

and as

(37a)

(37b)

(37c)

and

(38a)

(38b)

(38c)

The material equation (35) can be also discretized using 3-D
Haar scaling and wavelet basis (2) as discussed in [13] in the
case of Battle–Lemarie scaling and wavelet basis. However,
in the case of 3-D Haar scaling and wavelet basis, it is
more simply discretized with using the basis transformation
matrix . For isotropic dielectric materials, the material (35)
is written for a rectangular subcell for in

a unit Yee cell as

for (39)

This can be rewritten in a matrix form as

for
(40)

where

(41)

(42)

and is shown in (43) at the bottom of the following

page. Since the matrix is the basis transformation matrix
between the rectangular-pulse basis functions and the Haar
basis functions, (40) can be transformed into the Haar basis
coefficients using relation (17) as

for

(44)
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where

(45)

(46)

and

(47)

The transformed matrix can be reduced to a
simple matrix having a highly symmetric representation

(48)

where the inner products

for (49)

with the column vectors and defined by

(50)

Fig. 17. An Ez field distribution of the centered-dielectric-slab loaded
rectangular cavity shown in Fig. 6(b) at time step of 2389.

and

(51)

In the time-stepping algorithm, (44) is computed after the flux
density is updated by (38).

A mode of the centered-dielectric-slab loaded rect-
angular cavity shown in Fig. 6(b) was analyzed with this
formulation. The number of Yee cells used in the analysis
was 14 8 6 and nonuniform grids were incorporated.
With being 0.8 times the Courant limit, which was

ns, 2389 time steps were performed. The extensive
computation showed that the exact formulation was stable
at 10 time steps, and no instability was observed. The
field plot demonstrates smooth field distribution as shown
in Fig. 17. Although this scheme takes longer computational
time than the formulation described in Section II for the
approximate treatment of inhomogeneous dielectric materials,
it can be applied only at the dielectric interface to improve the
computational efficiency.

VI. CONCLUSIONS

A three-dimensional multiresolution analysis procedure sim-
ilar to the FDTD method has been derived by using three-
dimensional Haar scaling and wavelet functions. The resulting
method has been tested and validated by analyzing several
cavity structures including inhomogeneously dielectric loaded
rectangular cavities. The method has also been applied to the
analysis of microwave passive structures such as microstrip
low-pass filters and spiral inductors.

(43)
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The resulting -parameters are in good agreement with
those obtained with the conventional FDTD method. However,
the field distribution plots show small distortions in the pro-
posed method. The calculation time for the proposed method
was approximately half that of the equivalent conventional
FDTD method.
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